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Numerical computations and order-of-magnitude estimates are used to describe the time evolution of a drop
of a very viscous liquid of finite electrical conductivity attached to a metallic plate which is suddenly subject
to a uniform electric field. Under the action of the electric stresses induced at its surface, the drop elongates in
the direction of the field, and charged droplets are emitted when the strength of the field is higher than a certain
critical value. A stationary emission mode exists in which the attached drop develops a conical tip and a thin
jet, with small droplets emitted from the end of the jet in a process that involves the formation of a long
ligament. The flow rate and the electric current carried by the stream of droplets emitted in this mode are
determined by the flow and the transfer of charge in the attached drop, in particular in a small region around
its tip and in a leading stretch of the jet, where the solution is nearly stationary despite the transient character
of the jet further downstream. A simplified analysis of the stationary regions is carried out to elucidate the
effects of the physical properties of the liquid �electrical conductivity, permittivity, viscosity, and surface
tension�, the volume of the drop, and the strength of the applied field. For high electrical conductivities and
applied fields well above its critical value, the electrical and viscous stresses are large compared to surface
tension stresses, and their balance gives a flow rate proportional to the square of the applied field. The electric
current is then that of a stationary electrified jet fed with this flow rate.
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I. INTRODUCTION

The dynamics of an electrically neutral drop in a uniform
electric field and of an electrically charged drop in a field-
free region are classical problems that have been investigated
for over a century. Applications include electrified cloud
drops �1,2�, processes involving electrostatic spraying �3,4�,
in particular in connection with the mass spectrometry of
biomolecules �5�, and ink-jet printing, among others. Ray-
leigh �6� determined the maximum charge that a spherical
drop of a conducting liquid suspended in a dielectric field-
free medium can hold as a function of its radius and the
surface tension of the liquid. When this maximum charge is
approached or exceeded, the drop becomes unstable and un-
dergoes a Coulombic fission whereby it loses a fraction of its
mass that may range from less than 0.1% to 30%, and a
fraction of its charge that may range from 10% to over 80%;
see Li et al. �7� and references therein. Fernández de la Mora
�8� points out two different modes of Coulombic fission; a
rough fission mode in which the drop divides into a few
fragments of similar sizes �9–12�, and a fine fission mode
that proceeds via the formation of a conical tip and the ejec-
tion of a fine transient jet that produces many daughter drops
much smaller than the parent drop �13–17�. Somewhat im-
precisely, the first mode is associated with apolar liquids of
low electrical conductivity, and the fine fission mode is typi-
cal of highly conducting liquids.

The tip of a drop in the fine fission mode resembles the
conical meniscus of an electrospray in the cone-jet mode
�18,19�, in which, under the action of an externally applied
field, a stationary, supported, and continuously fed meniscus
becomes conical and ejects a thin jet that eventually breaks
into a spray of charged drops. This similarity led Fernández
de la Mora �8� to propose that, if the characteristic time of
formation of the jet in a Coulombic fission is short compared

with the duration of the fission process, then the size of the
daughter drops and the electric current they carry should be
governed by the laws of stationary cone-jets for highly con-
ducting liquids �4,20�. Fernández de la Mora �4� shows that
the condition on the times can be easily satisfied with liquids
of low viscosity, but not with the triethylene glycol used in
some of the experiments of Li et al. �7�, among others. Com-
putations carried out by Betelú et al. �21� for liquids of infi-
nite conductivity charged to the Rayleigh limit suggest that,
in the absence of inertia, the surface develops a conical tip in
a finite time, but with a semiangle smaller than the Taylor
angle of 49.3° �22� expected for a stationary cone-jet.

An isolated neutral drop of a conducting liquid is sym-
metrically elongated by a uniform electric field. The drop
reaches a state of equilibrium with a finite elongation if the
strength of the field is smaller than a critical value whose
square is proportional to the surface tension of the liquid and
inversely proportional to the product of the permittivity of
the surrounding medium and the initial radius of the drop.
The elongation of the drop at equilibrium and the critical
electric field have been computed using a spheroidal ap-
proximation for the shape of the surface together with a bal-
ance of energy or of electric, pressure, and surface tension
forces �22–24�, or numerically �25–27�. Above the critical
field, the electric stress acting on the surface of the drop
disrupts it in a manner that depends on the physical proper-
ties of the liquid and the surrounding medium �see Ref. �28�
and references therein�. In vacuum or in a dielectric gas,
which are the cases of interest here, the possible modes of
evolution of a neutral drop are analogous to the rough and
fine fission modes of a charged drop. The second of these
modes, which is typical of liquids of high conductivity, has
been investigated by Grimm and Beauchamp �29� for
225 �m drops of methanol in air. In their visualizations,
these authors observe a continuous elongation of the drop
following the application of the field, until two conical tips
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develop and jets are ejected from the two poles of the drop
after a time that depends on the volume of the drop and
decreases when the strength of the applied field increases.
The two jets emit charges of opposite polarities and very
little mass. They do not induce a net charge in the drop, and
therefore the duration of the process may be large compared
to the duration of a Coulombic fission of a charged drop.
Oddershede and Nagel �30� investigated the related problem
of the development of a spout singularity and a jet at the
surface of a liquid layer subjected to a high electric field
normal to the surface. On the basis of their experimental
results, these authors propose a power-law scaling for the
final steps of the evolution leading to the singularity.

Reznik et al. �31� studied numerically and experimentally
the first stages of the process for a drop attached to a plane
electrode which is abruptly charged to a constant voltage
relative to another parallel electrode. Their numerical com-
putations for a liquid of infinite conductivity and a viscosity-
dominated flow show that the attached drop develops a
single conical tip with a semiangle of about 30°, not unlike
that of Betelú et al. �21�, or sheds a large blob of liquid if its
initial volume is higher than a certain value. These results
have been recently extended by Collins et al. �32�. Using the
leaky dielectric model �33,34� for a layer of a relatively apo-
lar liquid of low electrical conductivity, these authors nu-
merically describe the formation of a jet from the protrusion
that appears at the surface following the application of the
field and compute the evolution of the jet until a small drop-
let detaches from its tip. They analyze the crucial role played
by the electric shear at the surface of the developing jet, and
the viscous transfer of momentum to the bulk of the liquid.
They find that the size of the detaching droplet is propor-
tional to the product of the viscosity and the dielectric con-
stant of the liquid, and inversely proportional to the cubic
root of the product of its electrical conductivity and its sur-
face tension.

In this paper, the process of formation of a jet and emis-
sion of small charged droplets from a parent drop attached to
a plane electrode is further analyzed for liquids of high elec-
trical conductivity in the framework of the leaky dielectric
model. The effect of the inertia of the liquid, which was
taken into account by Collins et al. �32�, will be left out here.
This approximation is bound to fail away from the drop for
long jets, but it is admissible in the attached drop and the
beginning of the jet for small drops and very viscous liquids.
It brings in noticeable simplifications to the numerical treat-
ment and the analysis of the results, which allows one to
study liquids of moderately high electrical conductivity, for
which the emitted jet is very thin, and long times in the
evolution of the jet. In the absence of inertia, the detachment
of droplets is found to involve the formation of a long liga-
ment and is not periodic. However, the numerical results for
moderately high electrical conductivities show that, when the
droplets detach continuously from the end of a jet, the flow
and the electric field rapidly become stationary in a small
region around the tip of the attached drop and in a leading
region of the jet, which determine the electric current emitted
by the drop. A current transfer region analogous to the charge
relaxation region of Refs. �4,20� is identified at the beginning
of the jet where the finite conductivity of the liquid limits the

conduction current that transfers charge to the surface. Quali-
tative scaling laws for the flow rate, the electric current, and
the radius of the jet are worked out in limited ranges of the
parameters of the problem.

II. FORMULATION

A drop of volume V* of a liquid of viscosity �, surface
tension �, electrical conductivity K, and permittivity �0�,
where �0 is the permittivity of the vacuum or the dielectric
gas surrounding the drop, stands on a plate electrode. At a
certain time the electrode is charged to a high voltage rela-
tive to another distant parallel plate, which leads to a uniform
electric field E

�
* far from the drop. The electric field causes

electric stresses at the surface �right-hand sides of Eqs. �4b�
and �4c� below� that elongate the drop against the restoring
effect of the surface tension. The flow of the liquid is as-
sumed to be dominated by viscous forces, and the radius a of
the wetted circle on the electrode is assumed to remain con-
stant during the evolution of the drop.

The electric fields in the liquid and the surrounding me-
dium are of the form El=−��l and E=−��, respectively,
where �l and � are the electric potentials in the liquid and
outside. The electric field El leads to a conduction current
density j=KEl, and conservation of charge requires � · j=0 in
the absence of net charge in the bulk of the liquid. The elec-
tric potentials satisfy Laplace’s equations �2�=�2�l=0 with
the boundary conditions �0�En−�En

l �=� and Et=Et
l at the

surface of the liquid �Landau and Lifshitz �35��, �=�l=0 at
the electrode, and ��=−E

�
*i far from the drop. Here sub-

scripts n and t denote the components of the fields normal
and tangent to the surface of the liquid �with n pointing away
from the liquid�, i is a unit vector normal to the electrode,
and � is the density of free surface charge, which satisfies
the conservation equation �Saville �34��

D�

Dt
= KEn

l + �n · �v · n �1�

at the surface. Here v is the velocity of the liquid and
D� /Dt=�� /�t+v ·�� is the material derivative at the sur-
face. Equation �1� expresses that the surface charge is con-
vected by the liquid, with its density increasing due to the net
charge that conduction brings to the surface per unit area and
time �first term on the right-hand side of the equation� and
decreasing due to stretching of the surface �n ·�v ·n in the
second term on the right-hand side is the negative of the
straining rate of a material element of the surface; see, e.g.,
Batchelor �36��. The balance of surface charge accumulation
and conduction toward the surface, � / t

e
*�KEn

l , with �
��0En��0�En

l from the boundary condition for the normal
electric field, determines the characteristic time t

e
*=�0� /K

required for the surface charge to approach its equilibrium
value in a quiescent surface ��eq=�0En� and screen the liquid
from the applied field. The relaxation time t

e
* is a combina-

tion of physical properties of the liquid only.
The Reynolds number Re=�vca /�=��a /�2, where � is

the density of the liquid and vc=� /� is a characteristic ve-
locity determined by an order-of-magnitude balance of vis-
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cous and surface tension stresses, is assumed to be very
small, so that the effect of the inertia of the liquid can be
neglected. The condition Re	1 requires a	10 �m for eth-
ylene glycol, a	200 �m for palm oil, and a	10 mm for
glycerine, and droplet sizes well below these values should
be used to ensure that the effect of the inertia of the liquid is
small also in a leading region of the jet and for high values of
the applied electric field �see Sec. III C below�.

Dimensionless variables are introduced using the radius a
of the wetted circle, the viscous-capillary velocity vc=� /�,
and the electric field Ec=�1/2�0

−1/2a−1/2 as units of length,
velocity, and electric field. The electric potentials, density of
surface charge, and electric current are measured with Eca,
�0Ec, and �0Ecvca, respectively. Denoting by f�x , t�=0 the
surface of the liquid, which is a material surface to be deter-
mined as part of the solution, the governing equations and
boundary conditions take the form

� · v = 0, 0 = − �p + �2v, �2�l = 0 �2�

in the liquid, for f�x , t�	0,

�2� = 0 �3�

outside the liquid, for f�x , t�
0,

Df

Dt
= 0, �4a�

− p + n · �� · n + � · n =
1

2
�En

2 − �En
l2� +

1

2
�� − 1�Et

2,

�4b�

t · �� · n = �Et, �4c�

En − �En
l = � , �5a�

Et = Et
l, �5b�

D�

Dt
= �En

l + �n · �v · n �5c�

at the surface, f�x , t�=0,

v = 0, �6a�

� = �l = 0 �6b�

at the electrode �x=0�, and

�� = − E�i �7�

far from the electrode. Here p is the dimensionless pressure
of the liquid referred to the pressure of the surrounding me-
dium; ��=�v+ ��v�T is the dimensionless viscous stress ten-
sor; n and t are unit vectors normal and tangent to the sur-
face; and x is the dimensionless distance to the electrode.
Equations �4b� and �4c� are balances of stresses normal and
tangent to the surface. The right-hand sides of these equa-
tions are the components of the electric stress normal and
tangent to the surface, denoted �n

e and �t
e in what follows

�Landau and Lifshitz �35�, Saville �34��.

The solution of the problem depends on the dimensionless
parameters

V =
V*

a3
, E� =

�0
1/2a1/2E

�
*

�1/2 , �, � =
�Ka

�0�
, �8�

where V, the dimensionless volume of the drop, appears in
the initial conditions. Initially the drop is taken to be a
spherical cap with �=0. Attention is given primarily to cases
with large values of the dimensionless electrical conductivity
�.

Axisymmetric solutions of Eqs. �2�–�7� have been com-
puted using standard boundary elements methods to solve
the Laplace and Stokes equations �2� and �3� and a second-
order Runge-Kutta method to advance the evolution equa-
tions �4a� and �5c�. The dimensionless distance to the sym-
metry axis and the radius of the cross section are denoted r
and rs�x , t� in what follows.

III. RESULTS AND DISCUSSION

A. Transient computations

The critical value of the dimensionless electric field �E�c
�

below which a hydrostatic solution exists is a decreasing
function of the dimensionless volume of the drop. It is E�c
�0.86 for V=0.9, which is about the volume of a drop
shaped as a Taylor cone, and E�c

�0.56 for V=2. The equi-
librium shapes do not depend on � and �.

The elongation of the drop increases continuously with
time when E�
E�c

. In agreement with the numerical results
of Reznik et al. �31� for liquids of infinite conductivity, the
drop is seen to develop a nearly conical shape around its tip,
with a semiangle smaller than the Taylor angle. The liquid
speeds up in a region of decreasing size around the tip, x
=xtip�t�. The time evolution of xtip is shown in the inset of
Fig. 3 below for a sample case. A power law �xS−xtip�
 �tS
− t�� can be fitted to the final steps of this evolution, where xS
and tS denote the location and time of the apparent singular-
ity �xS�1.95 and tS�6.2 for the case of Fig. 3� and the
exponent � is about 0.5. This value is similar to the one
found by Betelú et al. �21� for an isolated drop charged to the
Rayleigh limit, but somewhat higher than the experimental
value 0.42 reported by Oddershede and Nagel �30�, which
might be due to the effect of the inertia of the liquid in the
experiments.

The evolution departs from a power law when a small
patch of liquid protrudes from the rounded tip. In the com-
putations, this patch becomes a jet that eventually emits
small droplets, as illustrated in Fig. 1 for a sample case. The
radius of the jet decreases when the dimensionless conduc-
tivity � increases.

Figure 2 shows the distributions of electric field, surface
charge, and electric and surface tension stresses at the sur-
face of the drop and the jet at two instants of time. The
left-hand side panels are for a time slightly after the detach-
ment of a droplet, and the right-hand side panels are for a
time before the detachment of the following droplet. As can
be seen, the conditions in the attached drop and in a drop-to-
jet transition region �around x=1 in the figure� are nearly
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independent of time. The flow rate and the electric current
entering the jet are also independent of the transient flow in
the jet further downstream. The dimensionless surface charge
coincides with the dimensionless normal electric field in the
attached drop, where the residence time of the liquid is large
compared with the electric relaxation time �te=� /� in di-
mensionless variables�, but not in the drop-to-jet transition
region, where both times are of the same order and the sur-
face charge cannot follow the evolution of the normal field,
though both variables go through a maximum and decrease
in the jet. These results agree with the general picture put
forward by Fernández de la Mora and Loscertales �20� for
electrosprays of highly conducting liquids working in the
stationary cone-jet mode with small flow rates.

The surface tension and normal electric stress balance
each other in the drop, where the electric shear is small �but
see comments at the end of Sec. III B and in Sec. III C 1
below for large values of E��. The normal electric stress is
larger than the surface tension in the transition region, lead-
ing to the outward curvature of the surface that forms the jet,

but the situation reverses further downstream, where the in-
ward surface tension stress increases monotonically with
streamwise distance and soon becomes the dominant stress
to be balanced by the pressure and viscous stresses of the
liquid on the surface. This suggests that the final stages of
drop pinchoff are not much affected by local electric forces.
The capillary pinchoff of a very viscous liquid in the absence
of electric forces is known to be a complex process that
involves the formation of a long filament �37�, but the fine
details of this process are not captured by the present com-
putations. Here, following previous work �38�, a droplet is
taken to detach when the minimum radius of the jet becomes
smaller than a certain cutoff value of the order of a thou-
sandth of the radius of the base of the attached drop. The jet
is then cut at its minimum radius and the surface is artifi-
cially rounded to continue the computation until another
droplet forms and detaches from the jet.

The evolution of the jet has been followed in this manner
through a number of detachments. The loss of volume of the
drop at each detachment is very small, of about 1.5�10−5

for the case shown in Fig. 1. The distance that the tip of the
jet travels between successive detachments is at first larger
than the length of the detached droplet, so that the tip follows
the sawtooth trajectory illustrated in Fig. 3, with a continu-
ous increase of the average length of the jet. The tip may
undergo a large number of detachments, and the average
length of the jet may increase to fairly large values, before
the process stabilizes. This poses severe restrictions on the
precision of the computations. The time evolution is still not
periodic after the average length of the jet levels off, and it
stays nonperiodic even when the small volume lost at each
detachment is artificially added back to the attached drop.

B. Stationary computations

The preceding computations for moderately large values
of � show that the flow and the electric field are very nearly
stationary around the tip of the attached drop and in a leading
stretch of the jet, both before the average length of the jet
stabilizes and in the continuous emission mode that is estab-
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lished afterwards. These regions are of interest because, as
will be seen in Sec. III C below, they determine the electric
current carried by the jet. Being quasistationary, they can be
subject to the same type of analysis used for a strictly sta-
tionary cone-jet �4�.

It should be noted that the continuous emission mode il-
lustrated by these computations is not the only mode by
which small droplets can be emitted from an electrified me-
niscus. There are other emission modes that exhibit a cyclic
depletion and buildup of part of the meniscus, whose tip is
no longer quasistationary; see Refs. �18,19,39� and the vid-
eos in the supplementary material of Ref. �40�. A case in
point is the set of pulsating modes of a nanoelectrospray. A
nanoelectrospray consists of a capillary drawn to 1–2 �m
exit diameter and loaded with a liquid that may be sprayed
into drops in the 100-nm-diameter range at flow rates of the
order of 3�10−10 m3 /s under the action of a high voltage
applied between the capillary and another electrode �41,42�.
A nanoelectrospray may work without any pressure applied
to drive the liquid, whose flow rate is dictated by the applied
voltage, the needle geometry, and the orifice diameter. It may
function in various pulsating modes �43,44�, which typically
give way to a stable cone-jet mode when the voltage is in-
creased. Similar pulsating modes might exist for a drop at-
tached to a plate electrode, though some features of the pul-
sating modes of a nanoelectrospray seem to be specific and
connected to the hydraulic resistance of the narrow capillary
of this device �43�. Pulsating modes will not be discussed
here.

Turning back to the continuous emission mode, it can be
seen that the distribution of conduction current in the bulk of
the attached drop is quasistationary when � is large. Since
� · j=0, the difference between the electric current that enters
the base of the drop by conduction from the electrode and the
conduction current that reaches the quasistationary region
around the tip is equal to the rate at which conduction brings
charge to the surface of the drop. This charge may accumu-
late at the surface or be convected by the flow, leading to a
surface convection current that adds to the conduction cur-
rent in the bulk of the liquid. However, the convection cur-
rent is small compared to the conduction current upstream of
the tip �see Fig. 8 and the discussion in Sec. III C below�,
and the rate of accumulation at the surface tends to zero in a
time of the order of the electric relaxation time �� /� in di-
mensionless variables� required for the surface charge to
achieve equilibrium and render En

l negligible in the drop.
Here this time is short compared to the mechanical time of
evolution of the drop, and therefore the drop transfers con-
duction current unaltered from the electrode to the quasista-
tionary region around its tip, where it is effectively trans-
ferred to the surface.

The flow needs not be quasistationary in the bulk of the
drop, but its slow time variation is not expected to affect the
dynamics of the small quasistationary regions of interest.
Here the following approximations are used to avoid com-
puting both the evolution of this flow as the drop is slowly
consumed and the fast evolution of the flow in the transient
region of the jet. First, the jet is artificially truncated at a
constant distance from the electrode, which is sufficiently
large to ensure, through numerical tests, that the solution in

the regions of interest is insensitive to the truncation. This
approximation has been used before in the numerical com-
putations of continuously fed jets �45,46�. Second, the flow
rate crossing the far end of the truncated jet is artificially
reinjected into the drop, in order to keep the volume of liquid
constant. This approximation makes a stationary solution
possible in certain regions of the parameter space. As far as
the quasistationary regions are concerned, solutions for dif-
ferent values of the volume of liquid should be nearly
equivalent to solutions for different times during the con-
sumption of a real drop. Reinjection of liquid into the drop
makes the model resemble the meniscus of a nanoelectro-
spray, in which capillary forces draw liquid from the capil-
lary tube to resupply the liquid lost at the apex. The analogy
has been used elsewhere �47� to analyze the related but hy-
drodynamically simpler problem of the meniscus of an ion
source. However, this analysis shows that the pressure drop
in the feeding tube, which is not accounted for here, may
play a role in the stability and transient response of such
systems.

A stationary solution with a truncated jet is found for
values of E� above a certain minimum that depends on V, �,
and �. When the minimum E� is approached from above,
the stationary surface develops a neck that heralds pinchoff
at a section between the attached drop and the jet. Depending
on the values of the parameters, this minimum may be
smaller or larger than the critical value E�c

at which a
rounded hydrostatic drop ceases to exist �see inset of Fig.
4�a��. The first case leads to hysteresis and multiplicity in a
range of E� that depends on V, �, and �. In the second case
no stationary solution is found in a range of E� where pul-
sating modes could develop, though this possibility is not
explored here.

The stationary flow rate entering the jet is shown in Fig.
4. Contrary to the case of the continuously fed meniscus of
an electrospray �4�, in which it is given at the outset, the flow
rate is determined here as part of the solution. It increases
with E�, as could be expected from the increase of the elec-
tric stresses acting on the drop. The flow rate also increases
with � at moderate values of this parameter, though it seems
to level to an asymptotic value when � is increased keeping
the other parameters constant �Fig. 4�b��.

The electric field acting on the attached drop is nearly
normal to its surface. The normal field En �at the outer side
of the surface� has the same appearance as in Fig. 2 above. It
increases on approaching the tip of the drop, reaches a maxi-
mum at the beginning of the jet, and then decreases with
streamwise distance. The component of the electric field tan-
gent to the surface, Et, rises to a shallow maximum at about
the same point as En or slightly downstream of it, and falls
toward E� in the jet. The maxima of En and Et increase and
shift slightly upstream when E� increases �Fig. 5�a��, and
they increase and shift slightly downstream when � in-
creases �Fig. 5�b��. The dotted curve of Fig. 5�b� shows the
electric field on the surface of a liquid of infinite conductiv-
ity. The field for finite values of the dimensionless conduc-
tivity � branches off this curve after following it in a leading
region of the surface whose size increases with �. The rise of
the tangent field is also postponed when � increases �dashed
curves in Fig. 5�b��, keeping the surface nearly equipotential
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in the leading region. The end of this region is marked by a
decrease in the rate at which the radius of the jet decreases
with streamwise distance, which is very large for a liquid of
infinite conductivity.

The radius of the jet at the position of maximum En �Fig.
6� increases with E� and decreases when � or � are in-
creased, though the dependence on � is moderate and felt
mostly for large values of E�. The increase of the radius with
E� reflects that the effect of the electric stresses on the drop,
which tends to increase the flow rate, overcomes the effect of
the electric shear on the jet, which tends to speed up the
liquid and causes the radius to decrease when E� is increased
at constant flow rate �see, e.g., Ref. �45��.

The density of surface charge � follows the evolution of
En. Electric conduction brings electric charge to the surface

of the drop and the leading part of the jet, where the normal
electric field at the liquid side of the surface �En

l , not dis-
played� also reaches a maximum. The density of surface
charge decreases further downstream due to the continuous
stretching of the surface. The ratio �En

l /En of the electric
displacements at the two sides of the surface is a measure of
the departure of the surface charge from the equilibrium con-
dition �eq=En; see Eq. �5a�. The maximum value of �En

l /En,
which is attained in the region of maximum En, is shown in
Fig. 7 for different values of the parameters. This ratio in-
creases with E� and � and decreases when � increases.

The electric current carried by the jet is made of the sur-
face current due to the convection of surface electric charge,
Is=2�rs�vsrs where vs is the velocity of the liquid at the
surface, and the conduction current in the bulk of the liquid,
Ib=���0

rsrEx
l dr where Ex

l is the axial component of the elec-
tric field in the liquid. The axial evolution of Is and Ib is
shown in Fig. 8 for a few cases. The total current I= Is+ Ib is
a constant independent of x that increases with E� and with
� �Fig. 9�. It increases faster than linearly with E� because
not only the axial field Ex

l but also the radius of the jet in-
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creases with E� in the region where Ib makes a noticeable
contribution of the current. Similarly, I increases less than
linearly with � because the radius of the jet decreases when
� increases. The current decreases slightly with �, whose
main effect is to lower the rate at which I increases with E�

at large values of this parameter.
The electric stresses normal and tangent to the surface

�right-hand sides of Eqs. �4b� and �4c�� also reach their
maxima at the beginning of the jet; see Figs. 2�c� and 2�d�.
The normal stress is large compared to the tangent stress, and
both increase with E� and �. When �=20 or above, the term
1
2 ��−1�Et

2 on the right-hand side of Eq. �4b� makes a large
contribution to �n

e in a region around its maximum, whereas

this term is outweighed by 1
2 �En

2−�En
l2� when �=2. The nor-

mal electric stress becomes large compared to the normal
stress due to surface tension when E� increases. The ratio
� ·n /�n

e rapidly becomes small in the attached drop and in a
leading region of the jet, though it increases with streamwise
distance in the jet.

C. Orders of magnitude

1. Flow rate

The relative weakness of the surface tension stress for
large values of E� suggests that the characteristic velocity of
the liquid in the drop may be determined by a balance of
electric and viscous stresses, which gives v�E�

2 in dimen-

sionless variables ��v /a��0E
�
*

2

in dimensional variables�.
Since the numerical results do not show strong recirculation
in the drop, the dimensionless flow rate entering the jet �non-
dimensionalized with �a2 /�� should be Q�E�

2 . Surface ten-
sion plays a role for moderate values of E�, and the flow rate
also depends on the dimensionless conductivity � when it is
not sufficiently large for the radius of the jet to be small
compared to the size of the drop. However, Fig. 4�b� shows
that the flow rate becomes independent of � for large values
of this parameter, and Fig. 4�a� displays the predicted qua-
dratic dependence of Q on E� for moderately large values of
E�.

This qualitative estimate is at variance with the hydro-
static balance of surface tension and normal electric stress
that is generally taken to prevail in the meniscus of an elec-
trospray �4,20� or in a charged drop undergoing a Coulombic
fission �8� when the conductivity of the liquid is sufficiently
high to assume that the size of the meniscus or the drop is
effectively infinite at the scale of the radius of the jet, and
therefore does not affect the dynamics of the jet. Fernández
de la Mora �8� argues that, in these conditions, the flow rate
carried by the jet emitted by an isolated charged drop should
be of the order of the theoretical minimum at which a sta-
tionary cone-jet can be established. This minimum depends
on the surface tension and the dielectric constant of the liq-
uid �as well as on its viscosity and conductivity, in the case
of a viscosity-dominated flow discussed here; see, e.g., Ref.
�48�� but does not depend on the size of the drop, while the
opposite is predicted by the estimate of the previous para-
graph for large E�. These differences might be attributed to
the moderate values of the dimensionless conductivity used
in the computations on which the estimate relies, which are
limited by numerical constrains and are smaller than typical
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experimental values. However, Fig. 4�b� shows no hint of
drastic changes for larger values of � and, despite the ab-
sence of a hydrostatic conical tip, a thin jet that breaks into a
large number of small droplets places these numerical results
nearer to the fine fission mode of polar conducting liquids �8�
than to the rough fission mode in which large attached drops
�31� or drops of apolar liquids of low electrical conductivity
divide into a few fragments of similar sizes.

A hydrostatic drop with a conical tip seems to be possible
only in a narrow range of values of E�. For a given shape of
the equipotential surface of the liquid featuring a Taylor cone
in a region around its tip, the electric field in this region will
be proportional to the inverse of the square root of the dis-
tance to the apparent vertex of the cone, but the strength of
the field will be proportional to E�, and thus the precise
strength that is required to balance surface tension and elec-
tric stresses �22� will be attained only for a precise value of
E�. This strict condition may be relaxed somewhat when the
ability of the surface away from the tip to adjust to variations
of E�, and the effect of the charge of the ejected jet on the
electric field in the conical region of the surface, are taken
into account; but it is unlikely that these mechanisms could
lead to a stabilized Taylor cone in a wide range of E�.

2. Current transfer region

Other features of the flow in the jet that are not directly
connected with the determination of the flow rate can be
qualitatively analyzed as for the jet of an electrospray. Let us
first estimate the time that it would take for electrical con-
duction in the liquid to establish the condition of equilibrium
of the surface charge ��=En�, beginning with an initially
uncharged surface ��=0�, in a stretch of the jet of character-
istic length x and characteristic radius rs�x. Being a slender
body, the jet acts electrically as a line of charge, which in-
duces an electric field whose radial and axial components at
a distance of order rs from the axis satisfy Er /Ex=O�x /rs� up
to logarithms of x /rs; see, e.g., Refs. �49,50�. The surface of
the jet is an equipotential in the final equilibrium state, which
means that the axial component of the induced field must
oppose the applied field E� and balance it at the surface. This
determines the order of the electric field normal to the sur-
face as En�E�x /rs, which is also the order of the dimen-
sionless density of surface charge at equilibrium, while the
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total surface charge in the stretch of the jet considered is C
�Enrsx�E�x2. This charge has to reach the surface by con-
duction through the jet cross section under the action of the
electric field in the liquid, which requires a time tch�C / Ib.
Two possibilities appear.

�i� If the axial field in the liquid is of order E� before the
surface charge reaches equilibrium and screens the liquid,
then the dimensionless conduction current is Ib��E�rs

2 and
the time required to charge the surface is tch� te�x /rs�2 /�,
where te=� /� is the electric relaxation time �0� /K nondi-
mensionalized with the viscous capillary time �a /�. In these
conditions the normal electric field at the liquid side of the
surface is En

l �E�rs /x, from the divergence-free condition
� ·El=0 with Ex

l �E�, and the ratio of electric displacements
at the two sides of the surface is �En

l /En���rs /x�2. This ratio
is small, and tch is large compared to te, if x /rs��1/2. A small
�En

l /En means that En is due mostly to the free charge accu-
mulated at the surface; see Eq. �5a�. The three terms of Eq.
�5a� are of the same order, E��rs /x, only in a first stage of
the charging process, for times of order te, but the axial field
induced by the surface charge is then small compared to E�

and cannot screen the liquid.
�ii� These estimates predict a large �En

l /En when x /rs

��1/2, which is meaningless in view of Eq. �5a�. In this case,
corresponding to a very polar liquid, the polarization caused
by the applied field E� keeps this field out of the liquid
making En�E�x /rs even before the accumulation of surface
charge becomes noticeable in Eq. �5a�. The normal field at
the liquid side of the surface is En

l �En /� before the surface
charge reaches equilibrium; the density of conduction current
normal to the surface is �En

l ; and the characteristic time to
attain equilibrium is tch= te, from the balance � / te��En

l in
the transport equation for the surface charge �5c� with �
�En. The divergence-free condition � ·El=0 gives now Ex

l

�En
l x /rs�E��rs /x�2 /��E� during the charging, as was ad-

vanced before, and the conduction current is Ib��Ex
l rs

2

�C / te.
In summary, the time it takes to charge the surface to

equilibrium is tch� te max��x /rs�2 /� ,1�.
The motion of the liquid has been disregarded in the pre-

ceding estimations. If a flow rate Q runs through the jet, the
characteristic velocity of the liquid is v�Q /rs

2 and the resi-
dence time of a material particle in the stretch of the jet
considered is tr�xrs

2 /Q, which is the time available for the
surface charge to approach its equilibrium. The condition tr
� tch imposes a relation between rs and x that defines the
current transfer region of the jet where electric conduction is
effective at charging the surface to values of � of the order of
its equilibrium value. The axial field induced by the free
surface charge in the current transfer region is of the order of
the applied field and partially balances it. The surface con-
vection current in the current transfer region is Is��rsv
�C / tr, which is of the order of the conduction current. The
conditions Is� Ib and tr� tch are equivalent definitions of the
current transfer region.

A second relation between rs and x comes from the bal-
ance of axial forces in the jet. For a stationary quasiunidirec-
tional jet in the absence of inertia, this balance reads �45,51�

�

�x
�3�rs

2�v
�x
	 + �rs

2 �

�x
��n

e −
1

rs
	 + 2�rs�t

e = 0, �9�

where the three terms are the effective axial viscous force,
the force due to the axial gradient of the pressure variation
induced by the normal electric stress and the surface tension,
and the force due to the electric shear stress. Here �n

e and �t
e

are the components of the electric stress normal and tangent
to the surface, given by the right-hand sides of Eqs. �4b� and
�4c�, respectively. In the region of interest the first term is of
order Q /x2 �using v�Q /rs

2�; the contribution of the normal
electric stress to the second term is of order En

2rs
2 /x�E�

2 x
while the contribution of the surface tension, of O�rs /x�, is
expected to be much smaller; and the third term is of order
rs�Et�EtE�x. The second and third terms are of the same
order when Et�E�, which happens for ��rs /x�2 small or of
order unity, and the balance of these two forces and the vis-
cous force requires Q /x2�E�

2 x, hence x�x0=Q1/3 /E�
2/3. The

third term of Eq. �9� is small compared to the second term
when ��rs /x�2�1 because then Et�E� �cf. the estimate of
Ex

l for this case above�. The balance of the first two terms of
Eq. �9� gives the same result as before but, in the absence of
a noticeable electric shear, a ��n

e /�x
0 is required for the
gradient of the electrically induced depression to push the
liquid downstream. The numerical results show that this con-
dition is realized only in a leading region of the jet, before �n

e

attains its maximum and begins to decrease.
The electric shear is zero for a liquid of infinite conduc-

tivity, whose surface is an equipotential. Computations show
that in this case the electric field at the surface �dotted curve
of Fig. 5�b�� and the normal electric stress ��n

e = 1
2En

2� increase
monotonically along the jet, and that the radius of the jet
decreases rapidly with streamwise distance. The latter result
can be understood using the refined expression
�Enrs /x�ln x /rs�E� �from slender body theory �49,50�, used
before without the logarithmic factor� to estimate the electric
depression in the second term of Eq. �9�. The balance of the
first two terms of this equation gives ln x0 /rs��x /x0�3/2.

For liquids of finite conductivity, the fast decrease of rs
ends when the electric shear comes into play. This happens
in the current transfer region where tr� tch if ��rs /x�2 is small
or of order unity in this region, or where ��rs /x�2=O�1� with
tr� tch otherwise.

Using the estimates of tch worked out before and leaving
out logarithmic factors again, the condition tr� tch gives x
=O�x0� and rs=O�rsT

� in the current transfer region, where

rsT
=

Q1/3

�1/4E�
1/6 , I � �1/2E�

2/3Q2/3 if
�1/2

E�

� � ,

�10a�

rsT
=

�1/2E�
1/3Q1/3

�1/2 , I �
�Q2/3

�E�
1/3 if � �

�1/2

E�

� �1/2.

�10b�

The two ranges of �1/2 /E� correspond to small and large
values of ��rsT

/x0�2, and the lower bound of �1/2 /E� in Eq.
�10b� expresses the condition x0 /rsT

�1. The results for the
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electric current come from straightforward estimations of the
surface convection and bulk conduction contributions, Is and
Ib, which are of the same order in the current transfer region.
The results for case �10a� coincide with estimates worked out
elsewhere for a continuously fed jet �45�. Case �10b� is rather
marginal and might not be fully realized owing to the effec-
tive lack of electric shear in the current transfer region. If the
estimate Q�E�

2 of Sec. III C 1 is carried into Eqs. �10�,
these results reduce to x0�1, and �rsT

, I�
��E�

1/2 /�1/4 ,�1/2E�
2 � for �1/2 /E��� and �rsT

, I�
���1/2E� /�1/2 ,�E� /�� for ���1/2 /E���1/2.

Figure 9�b� shows that the electric currents for different
values of � and � collapse reasonably well in a range of E�

when they are scaled with the factor �1/2Q2/3 appearing in
Eq. �10a�. The scaled currents increase nearly as E�

2/3, in
agreement with Eq. �10a�. When E� increases, the results for
large values of �, for which the condition �1/2 /E��� first
breaks down, are the first to fall below the 2 /3 power law,
though the prediction �10b� of a scaled current that decreases
with E� is never realized. Figure 6�b� shows a similar col-
lapse of the numerical data for the radius of the jet at the
position of maximum En when they are scaled with
Q1/3 /�1/4. Compare Fig. 6�b� with the unscaled radii in Fig.
6�a�.

3. Far jet

Convection of the surface charge makes the largest con-
tribution to the electric current of the jet downstream of the
current transfer region. Conservation of the current then re-
quires �vrs� I, and conservation of mass requires vr2�Q.
The applied field E� enters the jet when ��rs /x�2 ceases to be
large downstream of the current transfer region. The balance
of the first and third term of Eq. �9� then requires rs

2v /x2

�rs�E�. These three conditions taken together determine the
evolution of the radius, the velocity, and the density of sur-
face charge of the jet with streamwise distance:

rs�x� �
Q

I1/2E�
1/2x

, v�x� �
IE�x2

Q
, ��x� �

I1/2

E�
1/2x

.

�11�

The electric stress normal to the surface can be estimated
using these results and En��. It is �n

e �max��2 ,�E�
2 �, where

�E�
2 /�2��E�

3 x2 / I, so that the contribution of the tangent
field dominates the electric stress for x� I1/2�−1/2E�

−3/2. The
effect of the surface tension comes into play, making capil-
lary breakup possible, when 1 /rs��n

e, which happens for x
�max�Q1/3I1/6 /E�

1/2 ,�E�
3/2Q / I1/2�, where the radius of the jet

is of order rsc
=min�Q2/3 / I2/3 ,1 /�E�

2 �. This gives rough esti-
mates of the average volume of the droplets emitted by the
jet �rsc

3 � and the average emission frequency �Q /rsc

3 �, up to
numerical factors. Unfortunately these estimates cannot be
assessed by comparison with the numerical results of Sec.

III A. The computations cannot be reliably extended to the
high values of � that would be necessary for such compari-
son because their precision degrades when the jet becomes
very thin.

The effect of the inertia of the liquid has been left out of
Eqs. �2�–�7� on the assumption that the Reynolds number
Re=��a /�2 is small. However, the inertia will play a role in
a long jet even if it is negligible in the attached drop and in
a leading region of the jet. The inertia of the liquid would
lead to a term Re rs

2�v2 /�x on the right-hand side of Eq. �9�
�see Ref. �51��. The ratio of this term to the first term of Eq.
�9� can be estimated as Re IE�x3 /Q using Eq. �11�. Therefore
the balance of viscous and electric shear forces used to de-
rive Eq. �11� should be modified if the length of the jet is not
small compared to �Q /Re IE��1/3.

IV. CONCLUSIONS

The elongation of a drop attached to a metallic plate fol-
lowing the application of a uniform electric field has been
described numerically for liquids of finite electrical conduc-
tivity in the absence of inertial effects. The elongation of the
drop leads to a hydrostatic equilibrium if the applied field is
smaller than a certain critical value, or to the emission of
daughter droplets at higher fields. In the latter case, and in
the ranges of parameters that have been investigated, the
computation reproduces an evolution often observed in ex-
periments. The drop develops a conical shape around its tip
and ejects a fine jet that emits small charged droplets. The
flow rate and the electric current carried by the stream of
droplets are determined by the flow and the transport of elec-
tric charge in the attached drop and in a leading region of the
jet, where the solution is nearly time independent and ame-
nable to a simplified analysis. The effect of the finite conduc-
tivity of the liquid comes into play in a region at the begin-
ning of the jet where the solution departs from that for a
liquid of infinite conductivity. In this region, the electric field
normal to the surface reaches a maximum, the rate of varia-
tion of the radius of the jet with streamwise distance de-
creases substantially, and convection of the surface charge
becomes the mechanism responsible for most of the electric
current. The electric stresses dominate surface tension
stresses in this region and in the attached drop when the
applied field is moderately larger than its critical value and
the electrical conductivity is high. The balance of electric
and viscous stresses gives then a flow rate that increases as
the square of the applied field, while the order of the electric
current can be determined from a qualitative analysis of the
current transfer region of the jet.
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